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Abstract 

An algorithm was developed to process thermographic image sequences recorded after pulsed excitation in order to 
achieve noise reduction of data and at the same time a reduction of the necessary storage space. In contrast to existing 
methods like TSR, the algorithm does work on adjacent pixels both in space and time. The filter parameters are controlled by a 
physical model, based on the thermal broadening behavior of an instantaneous point source. Input parameters are the thermal 
diffusivity of the material and the maximum depth of observation. The results show efficient data smoothing, in particular at late 
times, where weak contrasts have to be evaluated. The data volume is compressed by 90%. 

1. Introduction 

In pulsed active thermography, large data sequences are collected after excitation. Many signal processing techniques 
are known to extract the information about defect depth and defect dimension. In our previous work, the focus was on efficient 
data compression [1]. Pre-processing techniques like pulse phase analysis or thermal signal reconstruction (TSR) [2,3] and 
step-window averaging [4] have several objectives: to compress the data, to reduce the influence of multiplicative and additive 
disturbances and to improve the signal-to-noise (S/N) ratio by performing a kind of averaging or low pass filtering. Up to now, 
most of these techniques operate on the time axis of each pixel, which is treated to be independent from the neighbouring 
pixels. We suggest a spatial-temporal data combining and compression (STC) pre-processing technique which allows 
averaging in the spatial and time coordinate simultaneously and leads to data compression and an improved S/N at the same 
time.  

2. Spatio-temporal filtering 

The idea of the STC approach is that, given by the physics of thermal diffusion, thermographic image sequences show 
detailed structures early after pulse excitation, which are blurred at later times. This holds for the image plane as well as for 
the time development. Therefore, it should be able to perform averaging over sub-blocks of the 3D x-y-t data with block sizes 
that are increasing with increasing time as shown in figure 1. With properly selected block dimensions, the information 
necessary for a subsequent defect reconstruction should be influenced only very little.  

 
 

Fig. 1. Concept of the spatio-temporal averaging used in the algorithm 
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3. Sampling rate estimations 

 
In the estimations of determining the smallest necessary spatial- and temporal sampling rate, the starting point is a 

solution of the heat conduction equation which describes an instantaneous and uniform heat pulse of a point-shaped source 
that is located inside a homogenous isotropic material. This case is selected because it first causes the strongest spatial and 
temporal gradients from all practical heat diffusion processes, and secondly provides a simple analytical solution of the heat 
conduction equation. This solution is given as follows: 

𝑇 𝑡𝑠 , 𝑥, 𝑦, 𝑧, 𝑥0 , 𝑦0, 𝑧0 =
1

8(𝜋𝛼 𝑡𝑠)
3
2

𝑒
−

( 𝑥−𝑥0 2+ 𝑦−𝑦 2+ 𝑧−𝑧0 2)

4𝛼𝑡𝑠                                                (1)

 where 𝛼 is the thermal diffusivity, 𝑡𝑠 is the time, (𝑥, 𝑦, 𝑧) are the coordinates of the observation point, (𝑥0, 𝑦0, 𝑧0) are the 
coordinates of the point-source that is located in a particular depth under the surface (𝑧 = 0), and 𝑇 is the temperature.  

3.1. Estimation of the necessary temporal sampling rate 

For a homogeneous material, the fastest temporal changes occur when the observation point is over the point source 
(𝑥 = 𝑥0 , 𝑦 = 𝑦0). It is further assumed that the radiation detected is only from the surface. Then, Eq. (1) becomes: 

𝑇 𝑡𝑠 , 𝑧0 =
1

8(𝜋𝛼 𝑡𝑠)
3
2

𝑒
− 

𝑧0
2

4𝛼𝑡𝑠                                                                                                         (2) 

A classical way to determine the necessary sampling rate would be to determine the Fourier spectrum of the temporal 
signal and to determine the highest relevant frequencies in the spectrum. Here, another method is selected: The time interval 
∆𝑡𝑠 will be calculated for which the relative temperature change 𝑇 𝑡𝑠 − 𝑇(𝑡𝑠+∆𝑡𝑠)

𝑇(𝑡𝑠)
 is less than a fraction 𝛿 (e.g. 𝛿 = 0.2). This 

criterion will deliver the temporal sampling interval ∆𝑡𝑠. Within a first order Taylor approximation, the temperature change is: 

                                       𝑇 𝑡𝑠 + ∆𝑡𝑠 − 𝑇 𝑡𝑠 = ∆𝑇 =
𝜕𝑇

𝜕𝑡𝑠
∆𝑡𝑠                                                                                         (3) 

Case 1: Firstly, the case is considered that the point source is located on the surface of the sample  𝑧0 = 0 . In this 
case, the temperature change can be described as follows:  

𝑇 𝑡𝑠 , 0 =
1

8(𝜋𝛼 𝑡𝑠)
3
2

𝑒0 =
1

8(𝜋𝛼 )
3
2𝑡𝑠

3
2

=
1

8(𝜋𝛼 )
3
2

𝑡𝑠
− 

3

2                                                                      (4) 

By substituting the derivative 𝜕𝑇 𝑡𝑠 ,0 

𝜕𝑡𝑠
 in Eq. (3), we obtain the following term: 

                                        ∆𝑇 =
− 

3

2

8(𝜋𝛼 )
3
2

𝑡𝑠
− 

5

2∆𝑡𝑠
′                                                                                                                     (5) 

where ∆𝑡𝑠
′  is the temporal sampling interval for the case when the defect is located on the surface. By evaluating the relation 

∆𝑇

𝑇 𝑡𝑠 ,0 
 to be equal or less than 𝛿 we can specify the temporal sampling ∆𝑡𝑠

′  interval for this case as follows: 

 ∆𝑡𝑠
′  =

2

3
𝛿𝑡𝑠                                                                                                                                  (6) 

Case 2: Now the second case is considered when the defect is located under the sample surface  𝑧0 > 0 . Similarly to 
the first case, the temporal sampling interval can be obtained from:  

∆𝑇 =
𝑒

− 
𝑧0

2

4𝛼𝑡𝑠

8(𝜋𝛼 )
3
2

  
𝑧0

2

4𝛼𝑡𝑠
2 𝑡𝑠

2 −
3

2
𝑡𝑠

− 
5

2 ∆𝑡𝑠
′′                                                                                     (7) 

where ∆𝑡𝑠
′′ is the temporal sampling interval for the case when the defect is located under the surface. By evaluating the 

relation ∆𝑇

𝑇 𝑡𝑠 ,𝑧0 
 to be equal or less than 𝛿 we can determine the temporal sampling ∆𝑡𝑠

′′ interval for this case as follows: 
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 ∆𝑡𝑠
′′  =

𝛿

𝑧0
2

4𝛼𝑡𝑠
2  − 

3

2𝑡

                                                                                                                            (8) 

Now, it has to be checked, which of the two cases results in the shorter sampling interval. This is accomplished by 
testing the relation ∆𝑡𝑠

′ ≤ ∆𝑡𝑠
′′ . This leads to:  

                                        1 ≥
1

 1−
𝑧0

2

6𝛼𝑡𝑠
 
                                                                                                                                    (9) 

Eq. (9) is satisfied when  1 −
𝑧0

2

6𝛼𝑡𝑠
 ≥ 1 or  1 −

𝑧0
2

6𝛼𝑡𝑠
 < 0,  but this is not the case when  1 −

𝑧0
2

6𝛼𝑡𝑠
 ∈ (0,1]. In this case 

we will obtain the following equation: 

𝑡𝑠 >
𝑧0

2

6𝛼
                                                                                                                                            (10) 

Eq. (10) means that  ∆𝑡𝑠
′   is larger than  ∆𝑡𝑠

′′   for 𝑡𝑠 larger than 𝑧0
2

6𝛼
. Consequently, for 𝑡𝑠 = 𝑡0 where 𝑡0 =

𝑧0
2

6𝛼
, the value ∆𝑡𝑠

′′. 

Furthermore, we can Eq. (8) by canceling the term −3

2𝑡
 from the denominator which minimizes the value of ∆𝑡𝑠

′′. The defect 
depth 𝑧0 is a priori unknown, so the maximum possible value for 𝑧0 has to be considered. Typically this value 𝑧0_𝑚𝑎𝑥  will be the 
thickness of the sample or the maximum expected testing depth estimated from the thermal properties of the object and the 
observation time. This will lead to a conservative estimation for ∆𝑡𝑠

′′. Due to the above discussion, the necessary temporal 
sampling interval 𝛥𝑡𝑠 can be specified as follows: 

                                     𝛥𝑡𝑠 =

 
 
 

 
 

𝛿

 
𝑧0_𝑚𝑎𝑥

2

4𝛼𝑡𝑠
2  

  ,      𝛥𝑡𝑠 < 𝑡0      

 
𝛿

 
3

2𝑡𝑠
 
  ,            𝛥𝑡𝑠 ≥ 𝑡0

       , 𝑡0 =
𝑧0_𝑚𝑎𝑥

2

6𝛼
                                                                     (11) 

3.2. Estimation of the necessary spatial sampling rate 

According at Eq, (1), the spatial equation is governed by the Gaussian distribution: 

𝑇 𝑥 =
1

8(𝜋𝛼 𝑡𝑠)
3
2

𝑒
−

 𝑥−𝑥0 2

4𝛼𝑡𝑠 𝑒
−

 𝑦−𝑦0 2

4𝛼𝑡𝑠 𝑒
−

 𝑧0 2

4𝛼𝑡𝑠                                                                                   (12) 

Due to the radial symmetry of the temperature profile with respect to the defect position, only the variable 𝑥 will be 
considered (for an anisotropic material, the coordinate of fastest lateral diffusion would be selected). The standard deviation in 
the spatial domain converts to its inverse in the Fourier domain. Almost 68% of the relevant spatial frequencies lie in the 
bandwidth [−1

𝜎
,

1

𝜎
] where 𝜎 =  4𝛼𝑡𝑠 is the standard deviation. The maximal spatial frequency considered will be:  

𝑓max (𝑠𝑝𝑎𝑡𝑖𝑎𝑙 ) =
1

𝜎
=

1

 4𝛼𝑡𝑠
                                                                                                            (13) 

Due to the Shannon theorem, the spatial sampling interval Δ𝑥𝑚  can be determined as follows: 

Δ𝑥𝑚 =
1

𝑓𝑠
=

1

2𝑓max (𝑠𝑝𝑎𝑡𝑖𝑎𝑙 )
=

 4𝛼𝑡𝑠

2
=  𝛼𝑡𝑠                                                                                (14) 

where 𝑓𝑠 is the sampling frequency. 

4. Spatial-Temporal combining data compression algorithm (STC) 
 

In this section the algorithm STC “spatial-temporal combining data compression” is presented. The algorithm performs 
2 steps: spatial averaging followed by temporal averaging. 

The abbreviation 𝑃𝑖𝑥𝑟𝑎𝑤 (𝑖, 𝑗, 𝐼𝑀𝑟𝑎𝑤 ) is used to refer to the grey value in the raw data of a pixel at the point 
𝑖, 𝑗 where (1 ≤ 𝑖 ≤ 𝐾, 1 ≤ 𝑗 ≤ 𝐿) at the raw image index 𝐼𝑀𝑟𝑎𝑤  where (1 ≤ 𝐼𝑀𝑟𝑎𝑤 ≤ 𝑁). To specify the corresponding time 𝑡 for 
every image in the time resolution 𝑟𝑒𝑠 =

1

𝑓𝑟𝑎𝑚𝑒  𝑟𝑎𝑡𝑒
 by the raw image index 𝐼𝑀𝑟𝑎𝑤  is multiplied. 
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4.1. Spatial averaging 
 

Determine ∆𝑥, ∆𝑦 which are the number of pixels that can be averaged in 𝑥 and 𝑦 direction respectively in every frame 
of the raw data 𝐼𝑀𝑟𝑎𝑤  as follows:  

 
  ∆𝑥 𝐼𝑀𝑟𝑎𝑤  =  ∆𝑥𝑚  𝐼𝑀𝑟𝑎𝑤  . 𝑃𝑁𝑥                                                                                      (15) 

where  𝑃𝑁𝑥 =
𝐾

𝑙𝑠𝑥
 , 𝑙𝑠𝑥 : length of the sample in 𝑥 direction. Afterwards, in every image in the sequence, pixels that are inside the 

same part ∆𝑥 𝐼𝑀𝑟𝑎𝑤  × ∆𝑦(𝐼𝑀𝑟𝑎𝑤 ) are averaged. 

4.2. Temporal averaging 

Determine ∆𝑡(𝐼𝑀𝑟𝑎𝑤 ), which is the number of the frames that can be averaged with the image 𝐼𝑀𝑟𝑎𝑤  as follows: 

  

                                                               ∆𝑡 𝐼𝑀𝑟𝑎𝑤  =  
∆𝑡𝑠(𝐼𝑀𝑟𝑎𝑤 )

𝑟𝑒𝑠
                                                                                                          (16) 

where 𝑟𝑒𝑠 =
1

𝑓𝑟𝑎𝑚𝑒  𝑟𝑎𝑡𝑒
 is the resolution. Then allocate the frames to different time intervals due to ∆𝑡(𝐼𝑀𝑟𝑎𝑤 ). The frames with 

equal ∆𝑡(𝐼𝑀𝑟𝑎𝑤 ) values are classified to the same time interval. Afterwards, specify the number of the images inside the time 
interval after the temporal averaging. Finally, perform the temporal averaging due to the smallest ∆𝑥 of the images that can be 
temporally averaged together according to ∆𝑡.  

5. Inverse transformation 

 
After the spatial- and temporal averaging, an inverse transformation is applied to decompress the filtered data. First, a 

spatial decompression and then a temporal decompression will be performed. It is worth saying that this inverse 
transformation should consider the time dependent compression and also it should produce smooth transition between the 
compression blocks as much as possible. 
 
5.1. Spatial decompression 

 
From 𝐼𝑀𝑐𝑜𝑚𝑝 = 1 until 𝑛, where  𝐼𝑀𝑐𝑜𝑚𝑝  refers to the compressed image index and 𝑛 is the reduced number of the raw 

images after temporal averaging, the following steps are performed: 
Determine 𝑘, which is the number of pixels in 𝑥 direction after the spatial averaging as following: 
 

𝑘 =  
𝐾

𝑐𝑥𝑦
                                                                                                                                      (17) 

 
where 𝑐𝑥𝑦  is the smallest ∆𝑠 in an averaging interval where the images in this averaging interval were averaged due to it and 
1 ≤ 𝑝 ≤ 𝑘. 

In every decompression step, consider only a part of the compressed image 𝐵(𝐼𝑀𝑐𝑜𝑚𝑝 ) with size 3 × 3 (number of 

coefficients used in the polynomial fitting in 𝑥 direction  number of coefficients used in the polynomial fitting in 𝑦 direction). 
The 9 pixels in 𝐵(𝐼𝑀𝑐𝑜𝑚𝑝 ) are used to decompress the corresponding part in the decompressed image 𝐵(𝐼𝑀𝑑𝑒𝑐𝑜𝑚𝑝 ) with size 
𝑐𝑥𝑦 (𝐼𝑀𝑐𝑜𝑚𝑝 )  × 𝑐𝑥𝑦 (𝐼𝑀𝑐𝑜𝑚𝑝 ) where the centered averaged pixel in 𝐵(𝐼𝑀𝑐𝑜𝑚𝑝 ) is set in the centre of 𝐵(𝐼𝑀𝑑𝑒𝑐𝑜𝑚𝑝 ).  For every 
pixel in the averaged frame 𝐼𝑀𝑐𝑜𝑚𝑝  , specify the start index  𝐼𝑛𝑑𝑒𝑥𝑆𝑥(𝑝) and the end index 𝐼𝑛𝑑𝑒𝑥𝐸𝑥(𝑝) in 𝑥 direction and of 
their corresponding part 𝐵(𝐼𝑀𝑑𝑒𝑐𝑜𝑚𝑝 ) in the decompressed image. Furthermore, determine the indexes 𝐼𝑛𝑑𝑒𝑥𝑥 (𝑝)  of the 
averaged pixels of the averaged image regarding the raw image. Finally, determine the interpolation equation to decompose 
the image part 𝐵(𝐼𝑀𝑑𝑒𝑐𝑜𝑚𝑝 ): approximate the spatial signal in 𝑥 direction by a polynomial which contains 3 coefficients as 
follows:  𝑆𝑖𝑔(𝑥) =  𝑎0

′ (𝐼𝑛𝑑𝑒𝑥𝑥(𝑝))0 + 𝑎1
′ (𝐼𝑛𝑑𝑒𝑥𝑥(𝑝))1 + 𝑎2

′ (𝐼𝑛𝑑𝑒𝑥𝑥 (𝑝))2 ,where 𝑆𝑖𝑔(𝑥) is the original spatial signal in 𝑥-direction 
and 𝑎0

′ , 𝑎1
′ , 𝑎2

′  are the polynomial coefficients. In analog, the same is done for the signal in y direction: 
𝑆𝑖𝑔(𝑦) =  𝑎0

′′ (𝐼𝑛𝑑𝑒𝑥𝑦 (𝑞))0 + 𝑎1
′′(𝐼𝑛𝑑𝑒𝑥𝑦 (𝑞))1 + 𝑎2

′′ (𝐼𝑛𝑑𝑒𝑥𝑦(𝑞))2, where 𝑆𝑖𝑔(𝑦)is the original spatial signal in 𝑦-direction and 𝑎0
′′ , 

𝑎1
′′ , 𝑎2

′′  are the polynomial coefficients and 1 ≤ 𝑞 ≤ 𝑙  (𝑙 is the number of the pixels in 𝑦 direction after the spatial averaging). 
Multiplying  𝑆𝑖𝑔(𝑥) and 𝑆𝑖𝑔(𝑦) results the following equation: 
 

𝑃𝑖𝑥𝑐𝑜𝑚𝑝 (𝑝, 𝑞, 𝐼𝑀𝑐𝑜𝑚𝑝 ) = 𝑆𝑖𝑔 𝑥 . 𝑆𝑖𝑔(𝑦)                                                                                       (18) 
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where 𝑎0 = 𝑎0

′ . 𝑎0
′′ ,  𝑎1 = 𝑎1

′ . 𝑎0
′′ ,  𝑎2 = 𝑎0

′ . 𝑎1
′′ ,  𝑎3 = 𝑎1

′ . 𝑎1
′′ ,  𝑎4 = 𝑎2

′ . 𝑎0
′′ , 𝑎5 = 𝑎0

′ . 𝑎2
′′ ,  𝑎6 = 𝑎2

′ . 𝑎1
′′ ,  𝑎7 = 𝑎1

′ . 𝑎2
′′ ,  𝑎8 = 𝑎2

′ . 𝑎2
′′  . From 

Eq. (18) an interpolation equation is obtained which is solved to find the 9 coefficients 𝑎0, 𝑎1, … , 𝑎8. The part 𝐵(𝐼𝑀𝑑𝑒𝑐𝑜𝑚𝑝 )  
where 𝑃𝑖𝑥𝑐𝑜𝑚𝑝  𝑝, 𝑞, 𝐼𝑀𝑐𝑜𝑚𝑝   was set into its centre can be decompressed by using these 9 coefficients. By substituting the 
pixel indexes of 𝐵(𝐼𝑀𝑑𝑒𝑐𝑜𝑚𝑝 ) and the 9 coefficients, the pixels inside 𝐵(𝐼𝑀𝑑𝑒𝑐𝑜𝑚𝑝 ) can be determined. If 𝑐𝑥𝑦 = 1, copy the 
concerning frames from the compressed data into the decompressed data. 
 
5.2. Temporal decompression 

 
Generate a vector which contains a number of values as couples where the first value in every couple refers to ∆𝑡 

whose index is always even number. The second value of the couple refers to 𝐹𝑁 which is the number of the frames that can 
be temporally averaged due to the previous value ∆𝑡. The index of 𝐹𝑁 is always odd number. From this vector, determine the 
value 𝑓𝑛(𝑢) which is the number of frames after they were temporally averaged:  
 

𝑓𝑛 𝑢 =  
𝐹𝑁(𝑢)

∆𝑡(𝑢−1)
                                                                                                                                  (19) 

 
where 𝐹𝑁(𝑢) is the number of frames for a certain time interval before averaging and ∆𝑡(𝑢 − 1) is the averaging rate of 𝐹𝑁(𝑢). 
In every decompression step, consider only 3 consecutive averaged pixels due to the 3 coefficients that we use later in our 
polynomial fitting. Every 3 consecutive averaged pixels are used to decompress the averaging interval where the centered 
averaged pixel among the 3 averaged pixels is set in the centre of the averaging interval. For every pixel in the averaged 
frames and for every 𝑓𝑛 𝑢  where (1 ≤ 𝑣 ≤ 𝑓𝑛 𝑢 ), specify the start index value 𝐼𝑛𝑑𝑒𝑥𝑆(𝑢, 𝑣) and the end index value 
𝐼𝑛𝑑𝑒𝑥𝐸(𝑢, 𝑣) of every averaging interval regarding the raw images. Furthermore, determine the indexes 𝐼𝑛𝑑𝑒𝑥(𝑢, 𝑣) of the 
averaged pixels in the averaged frames regarding the raw images. Transform the temporal signal 𝑇(𝑧)  into the logarithmic 
domain and approximate it by a polynomial with 3 coefficients as follows: 

ln  𝑃𝑖𝑥𝑐𝑜𝑚𝑝  𝑝, 𝑞, 𝐼𝑀𝑐𝑜𝑚𝑝   = ln(𝑇 𝑧 ) = 𝑏0(ln  𝐼𝑛𝑑𝑒𝑥 𝐼𝑀𝑐𝑜𝑚𝑝   )0 + 𝑏1(ln  𝐼𝑛𝑑𝑒𝑥 𝐼𝑀𝑐𝑜𝑚𝑝   )1 + 𝑏2(ln  𝐼𝑛𝑑𝑒𝑥 𝐼𝑀𝑐𝑜𝑚𝑝   )2                   (20) 

If 𝑃𝑖𝑥𝑐𝑜𝑚𝑝 (𝑝, 𝑞, 𝐼𝑀𝑐𝑜𝑚𝑝 − 1), 𝑃𝑖𝑥𝑐𝑜𝑚𝑝 (𝑝, 𝑞, 𝐼𝑀𝑐𝑜𝑚𝑝 ) and 𝑃𝑖𝑥𝑐𝑜𝑚𝑝 (𝑝, 𝑞, 𝐼𝑀𝑐𝑜𝑚𝑝 + 1) are the 3 consecutive averaged pixels, 
then we get the following interpolation equation:   

 

 
 

ln  𝑃𝑖𝑥𝑐𝑜𝑚𝑝  𝑝, 𝑞, 𝐼𝑀𝑐𝑜𝑚𝑝 − 1  

ln  𝑃𝑖𝑥𝑐𝑜𝑚𝑝  𝑝, 𝑞, 𝐼𝑀𝑐𝑜𝑚𝑝   

ln  𝑃𝑖𝑥𝑐𝑜𝑚𝑝  𝑝, 𝑞, 𝐼𝑀𝑐𝑜𝑚𝑝 + 1  
 

 
 

=

 

 
 

(ln  𝐼𝑛𝑑𝑒𝑥 𝐼𝑀𝑐𝑜𝑚𝑝 − 1  )0 + (ln 𝐼𝑛𝑑𝑒𝑥 𝐼𝑀𝑐𝑜𝑚𝑝 − 1  )1 + (ln  𝐼𝑛𝑑𝑒𝑥 𝐼𝑀𝑐𝑜𝑚𝑝 − 1  )2

(ln 𝐼𝑛𝑑𝑒𝑥 𝐼𝑀𝑐𝑜𝑚𝑝   )0 + (ln  𝐼𝑛𝑑𝑒𝑥 𝐼𝑀𝑐𝑜𝑚𝑝   )1 + (ln 𝐼𝑛𝑑𝑒𝑥 𝐼𝑀𝑐𝑜𝑚𝑝   )2

(ln  𝐼𝑛𝑑𝑒𝑥 𝐼𝑀𝑐𝑜𝑚𝑝 + 1  )0 + (ln 𝐼𝑛𝑑𝑒𝑥 𝐼𝑀𝑐𝑜𝑚𝑝 + 1  )1 + (ln  𝐼𝑛𝑑𝑒𝑥 𝐼𝑀𝑐𝑜𝑚𝑝 + 1  )2

 

 
 

.  
𝑏0

𝑏1

𝑏2

                                                (21) 

where 𝑏0, 𝑏1 and 𝑏2 are 3 the polynomial coefficients. The averaging interval where 𝑃𝑖𝑥𝑐𝑜𝑚𝑝 (𝑝, 𝑞, 𝐼𝑀𝑐𝑜𝑚𝑝 )  is located in the 
decompressed images, is decompressed by using the coefficients that are solved by substituting 𝑃𝑖𝑥𝑐𝑜𝑚𝑝 (𝑝, 𝑞, 𝐼𝑀𝑐𝑜𝑚𝑝 − 1), 
𝑃𝑖𝑥𝑐𝑜𝑚𝑝 (𝑝, 𝑞, 𝐼𝑀𝑐𝑜𝑚𝑝 ) and 𝑃𝑖𝑥𝑐𝑜𝑚𝑝 (𝑝, 𝑞, 𝐼𝑀𝑐𝑜𝑚𝑝 + 1)  in Eq. (21) because 𝑃𝑖𝑥𝑐𝑜𝑚𝑝 (𝑝, 𝑞, 𝐼𝑀𝑐𝑜𝑚𝑝 )  is located in middle between 
𝑃𝑖𝑥𝑐𝑜𝑚𝑝 (𝑝, 𝑞, 𝐼𝑀𝑐𝑜𝑚𝑝 − 1) and   𝑃𝑖𝑥𝑐𝑜𝑚𝑝 (𝑝, 𝑞, 𝐼𝑀𝑐𝑜𝑚𝑝 + 1)  in the averaged images.  Solve the interpolation equation to find the 
3 coefficients 𝑏0, 𝑏1  and 𝑏2. The averaging interval where 𝑃𝑖𝑥𝑐𝑜𝑚𝑝 (𝑝, 𝑞, 𝐼𝑀𝑐𝑜𝑚𝑝 )  was set into the centre of the decompressed 
image, is decompressed by using these 3 coefficients. By substituting the indexes in the equation 

ln  𝑃𝑖𝑥𝑑𝑒𝑐𝑜𝑚𝑝  𝑖, 𝑗, 𝐼𝑀𝑑𝑒𝑐𝑜𝑚𝑝   = 𝑏0(ln  𝐼𝑛𝑑𝑒𝑥 𝐼𝑀𝑑𝑒𝑐𝑜𝑚𝑝   )0 + 𝑏1(ln  𝐼𝑛𝑑𝑒𝑥 𝐼𝑀𝑑𝑒𝑐𝑜𝑚𝑝   )1 + 𝑏2(ln  𝐼𝑛𝑑𝑒𝑥 𝐼𝑀𝑑𝑒𝑐𝑜𝑚𝑝   )2                        (22) 

pixel values in the decompressed images can be determined. Multiply the exponential function with the resulting 
decompressed pixels values in order to get their values without the logarithmic transformation.  

6. Results 
 

The algorithm developed was implemented as described and applied to raw data obtained from flash pulsed 
thermography. A steel sample (thickness: 1.2 cm) containing 6 flat bottom holes with different sizes and depths simulating sub-
surface defects was investigated. The frame rate value for the infrared camera used in the experiment was 383 Hz. 

Based on experimental data and an analysis of the operation of the algorithm, in figure 2 it is shown, how the number of 
frames and pixels used for averaging increase from 1 at short time after pulse heating up to higher numbers at later times. 

Values of 𝛿 = 0.2, 𝛼 = 15 ∙ 10−6 𝑚2

𝑠
   and  𝑧0_𝑚𝑎𝑥 = 5 𝑚𝑚 were used. Due to the spatial and temporal averaging, an 

improvement in the signal-to-noise ratio (SNR) can be expected. For white noise, this improvement was estimated by using 
the following equation: 
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𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 𝑆𝑁𝑅 =   𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑟𝑎𝑚𝑒𝑠 𝑡𝑜 𝑏𝑒 𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑑 . (𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑖𝑥𝑒𝑙𝑠 𝑡𝑜 𝑏𝑒 𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑑)2               (23) 

The calculated improvement of SNR as a function of the frame number is also shown in figure 2. 

 

Fig. 2. : Spatial and temporal averaging and calculated improvement of SNR in a metal sample as a function of the frame 

number 

 

Fig. 3. : Left: Selected frame no. 300 from the cooling sequence. Right: horizontal signal line profile along the marked line for 
the three cases raw, STC and TSR. 

 

The performance of the STC algorithm was compared to that of the well-known TSR algorithm [2,3]. Both were applied 
to the same experimental raw data. In figure 3, a selected frame from the cooling sequence is shown with some contrasts from 
sub-surface defects. A line profile was extracted from the raw data and is shown in comparison to the TSR fitted data (4 th order 
polynomial) and the STC filtered data. The noise reduction and the good reproduction of the raw data are visible. Lateral 
smoothing is not directly obtained in the images of TSR. 

By considering the temporal signal, one can also see that STC algorithm provides noise reduction with high 
reproduction quality in comparison to the TSR algorithm. This can be easily seen in figure 4, right, which shows the STC and 
TSR temporal signals in comparison to the raw data. Due to the low order of the polynomial, for TSR small oscillations around 
the raw curve are visible TSR. 

Suppressing the temporal noise improves determination of the defect depth since the depth defect value depends on 
the reflection time, which is the time when the thermal contrast begins to rise and becomes detectable. Figure 4, left shows for 
raw data and STC a temporal signal of a defect and another temporal signal of a defect-free point.   
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Fig. 4: Left: (Top) Defect and defect-free signal of the raw data (top) and after STC filtering (bottom). Right: Comparison 

between the raw data and the STC (top) and the TSR (bottom) temporal signal 

7. Compression 
 

Besides filtering, there is also a significant data compression effect when applying STC. Table 1 shows the achieved 
file sizes and the corresponding compression ratios for the case of the steel sample. Moreover, the reproduction losses RL 
were calculated, defined as the mean square deviation of all pixel values in the data block between raw data and processed 
data [1]. The compression effect of TSR is of course better than that of STC, but for the given example the reproduction losses 
are comparable or better for STC.  

Table 1. File size, compression ratio and the reproduction loss of the metal sample.  

Factor Raw data STC TSR 
File size, MB 157.2 12.8 2.6 
Compression ratio, % - 91.8 98.3 
Reproduction losses (RL) - 66.3 79.3 

 
8. Conclusion and future work 

 
In this work, a new algorithm for pulsed thermography data was proposed and tested using experimental data. The 

STC (Spatial and Temporal Compression) algorithm considers both the temporal and the spatial signal. The filtering 
parameters are dependent on a physical model of thermal broadening in space and time. Input parameters are the thermal 
diffusivity and the sample thickness or a maximum depth of detection. The STC algorithm provided a significant improvement 
of the signal-to-noise ratio (SNR). The filtered data reproduce the raw data with high accuracy. There is also a clear data 
compression effect that will improve with increasing frame rate.  
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The noise reduction will help to improve the determination of the defect depth, coating thickness, and defect size 
determination as characteristic points on the thermal decay curves or contrast half-width can be detected more precise in the 
following depth and size reconstruction steps. 

Emissivity contrast from the surface may disturb the filter effect, as this contrast does not diffuse with time. Here, the 
algorithm could still be improved by considering early frames. 
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